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Stiff polymer in monomer ensemble
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We employ an ordered monomer ensemble formalism in order to develop techniques to investigate a stiff
polymer chain which is confined to a certain region. In particular, we calculate the segment density for a given
location and segment orientation distribution within the confining geometry. With this method the role of the
stiffness can be examined by means of differential equations, integral equations, or recursive relations for both
continuum and lattice models. A suitable choice of lattice model permits an exact analytical solution for the
segment location and orientation density for a chain between two parallel plates. For the stiff polymer in a
spherical cavity we develop an integral equation formalism which is treated numerically, and in the same
spherical geometry, a different model of the polymer displays a solution of a differential equation.
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I. INTRODUCTION

In this paper we develop and illustrate methods by wh
the segment orientation and density of polymer chains w
stiffness and which are localized in a specified region
space may be computed. In two previous papers@1,2# a
grand canonical partition function for noninteracting, flexib
polymer chains was introduced in order to compute the ch
segment density in the context of an ordered monomer
semble. Here we introduce an angular dependence betw
polymer segments in this formalism. In particular, we illu
trate computations relating to the stiffness of such a chai
constraining geometries. The effects of stiffness of polym
or their localization within pores or tubes frequently ha
been a topic of interest in polymer physics extending fr
biopolymers to liquid crystalline behavior as well as sy
thetic stiff and short polyamides@3–9#. Related work has
been done by Ternovsky and co-workers@10# who developed
a model of a stiff polymer near a wall in order to investiga
adsorption of the chain to the surface. Stepanow@11#, for
example, has investigated a similar problem using
Kratky-Porod model for a semiflexible chain to write a d
ferential equation for the end-to-end distance distribution.
and Thirumalai @13,12# have investigated stiff polyme
chains under tension but without confining them to spec
regions and Chirikjian and Wang@14# derived partial differ-
ential equations for the end-end orientation and locat
probability of a stiff polymer. However, work by Cordeiro
Molisana, and Thirumalai@15# has described conformationa
properties of flexible chains between plates. Furthermore
cent experimental work by Pfohlet al. @16# has investigated
the orientation of biological macromolecules within micr
channels.

In this paper we present the method and calculations
segment density of three different models of confined cha
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with stiffness. These models all involve specific formulatio
of the stiffness and nature of the chains in the monom
ensemble. In one case analytic expressions for a polyme
a cubic lattice can be obtained. For chains in a continuum
show that torsional and flexural rigidities can be incorpora
naturally by the monomer ensemble. In a spherical confin
region it is possible to solve the associated integral equat
numerically.

While we specifically show here how to compute segm
densities of stiffand confinedchains, it is worthwhile to note
the underlying difficulties of some other mathematical tre
ments of the physics of wormlike polymers. For example,
well-known Kratky-Porod formulation for the wormlike
chain introduces a bending energy term~with an associated
constantt) in a measure for the pathr(s) of the chain, pa-
rametrized by the arc-lengths,

ZKP5E @dr~s!#expS 2
1

2t2E0

L

ds r̈2~s!D)
s

d~ ṙ2~s!21!

3e2V/kBT. ~1.1!

V is an interaction term dependent on the nature of the pr
lem under investigation. Although it is possible to calcula
some properties of interest for this formalism analytical
there are many questions for which the constraint of unity
the tangential vector is extremely difficult to treat mat
ematically. In many cases, this condition can only be
placed by an average constraint of unity along the wh
chain. Amongst many works, that of Gupta and Edwards@17#
contains a discussion and several references. Wilhelm
Frey @4# also point out that the extreme limits for very flex
ible or extremely stiff chain limits are usually the only a
cessible ones in many calculations.

We use the previously introduced concepts@1,2#. By char-
acterizing a bond position by a vectorr specifying its geo-
metrical center and orientation, a bond fugacityz(r)
d-
©2003 The American Physical Society01-1
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5^ruzur& and interaction weightw(r,r8)5^ruwur8&, i.e., a
Boltzmann factor, can be defined. The partition function
N bonds

JN5E @dr1 dr2•••drN#^r1uzur1&^r1uwur2&•••

3^rN21uwurN&^rNuzurN&. ~1.2!

This is used in order to write the expression for the gra
canonical partition function as follows:

J511 (
N51

`

^1uz~wz!N21u1&511^1uz~ I 2wz!21u1&.

~1.3!

The vectoru1& is the vector of ones, resulting in the sum
integral over all spatial~and angular! locations. One can
write for the number density

n~r !5
1

J
z~r!

dJ

dz~r!
, ~1.4!

which gives

n~r!5
1

J
^1u~ I 2zw!21ur&z~r!^ru~ I 2wz!21u1&. ~1.5!

By definingc and ĉ,

c~r!5^ru~ I 2wz!21u1&, ~1.6a!

ĉ~r!5^1u~ I 2zw!21ur&, ~1.6b!

one can simplify the expression for the density,

n~r!

z~r!
5

c~r!ĉ~r!

J
. ~1.7!

The grand canonical partition function is calculated from E
~1.3! as

J511E dr z~r!c~r!. ~1.8!

The average degree of polymerization is given by

j5E dr n~r!. ~1.9!

The solution of expressions~1.6a! and ~1.6b! plays the cen-
tral role in our calculations of the density.

Whereas in the previous works@1,2# the physical interpre-
tation of the vectorr represented the location of the junctio
between any two segments of the polymer chains, the
malism is identical when a larger degree of freedom is r
resented by a vector of such a kind.

Therefore, in summary, we look at a sequence of s
ments described by their positions and orientations. Th
segments are linked into a chain by Boltzmann factors,w, for
all consecutive pairs of segments. The chain ends are lin
01180
r

d

.
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-
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to only one other segment. Furthermore, we associate to
segment a fugacityz which is dependent on the position an
orientation of the given bond. The fugacity term can be us
to represent an external potential acting on each segm
such as might be caused by confinement of the chain.
resulting partition function then leads to an expression
the segment density, which contains much useful informat
about the chain.

The expression for the chain segment density depe
crucially on the quantitiesc and ĉ which are defined in
terms ofw andz. We determinec and ĉ, and consequently
n(r), for three situations.

The bending energy terms for models of stiff chains co
also be related to other quantities of interest for such cha
such as the persistence length and end-to-end distance
method provides a direct means of calculating the local d
tribution of segments rather than correlations. The monom
ensemble, for example, permits relatively easy calculat
for confined chains with which one cannot deal as readily
many other formulations which enable more direct compu
tions of end-to-end distances. A more technical treatm
~beyond the scope of this paper! within the monomer en-
semble formalism could facilitate the determination of c
tain correlations.

The different approaches in this paper involve spec
formulations of the stiffness which are incorporated into E
~1.6a! and~1.6b! for the functionsc in order to determine an
expression for the density function~1.7!. Section II shows
the computation for the density of a discrete polymer co
fined between two parallel plates. In the Sec. III a gene
form for the integral equations forc of a chain with bending
rigidity and torsion is derived. This method is illustrated b
numerical results for the solution of the integral equations
a chain in a spherical container. Finally, a simple example
a differential equation formalism is presented in Sec. IV.

II. CONFINED POLYMER ON A CUBIC LATTICE

In this section we make use of a discrete formalism
stiff chains. In addition to associating a position on a cu
lattice, each segment also has one of six possible direct
along the lattice. The bond direction is added to the previ
bond position to give the next bond position for the cha
We map the states for the directions onto real-space
vectors

^suP$^1u, . . . ^6u%↔$x̂,ŷ,ẑ,2 x̂,2 ŷ,2 ẑ%5$ t̂s%
~2.1!

in a cartoon representation in which all bonds lie along
ordinate axes and assign to each pair of bonds the weig

w~r1 ,s1 ;r2 ,s2!5dF r22S r11
1

2
t̂s1

1
1

2
t̂s2D G

3H 1 if t̂s1
• t̂s2

51

a if t̂s1
• t̂s2

50

b if t̂s1
• t̂s2

521.

~2.2!
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The first factor in the expression above constrains the cen
of adjacent segments of the polymer; the second facto
responsible for the bending energetics. We express
lengths in terms of the step length of the walk. For the c
when the chain isfree transfer matrix techniques applied
the lattice model defined above can be used to determine
free energy and free chain persistence length. Indication
how this can be done are given in Appendix A.

Due to asymmetry under exchange ofr1 and r2 of this
interaction, two functionsc, as defined earlier in Eqs.~1.6a!
and ~1.6b!, are invoked

ĉ~r,s!5^1u~ I 2zw!21ur,s& ~2.3a!

c~r,s!5^r,su~ I 2wz!21u1&, ~2.3b!

such that

152(
s8

E d3r 8 ^r,suwTur8,s8&z~r8,s8!ĉ~r8,s8!

1ĉ~r,s!, ~2.4a!

152(
s8

E d3r 8 ^r,suwur8,s8&z~r8,s8!c~r8,s8!1c~r,s!,

~2.4b!

whered3 r 8 is here ad-function measure that converts int
grals to sums over half-space lattices.

We investigate this polymer located between two para
plates located atr z56r z

056N. At the platesthe boundary
conditions require that a segment of the polymer be orien
in parallel to the plate or perpendicularly away from it, b
not perpendicularly into it:

z~r z ,s!55
0 ur zu.r z

0

0 r z5r z
0 ands53

0 r z52r z
0 ands56

z0 otherwise.

~2.5!

Due to symmetry the functionsc and ĉ depend only on the
z component of position and ons. Thex andy components
are confined to a fixed large length and all thermodyna
potentials normalized appropriately. Furthermore, by co
paring Eqs.~2.4a! and ~2.4b! for c and ĉ with the weight
~2.2! substituted, we conclude that

ĉ~r z ,s!5c„r z ,~s13! mod 6…, ~2.6!

with the convention thatĉ(r z,6)5ĉ(r z,0). Under the above
mentioned conditions we introduce the convenient notati

c~r z ,s!5H c i~r z! s51,2,4,5

c↑~r z! s53

c↓~r z! s56.

~2.7!

Symmetry dictates that
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c i~r z!5c i~2r z!, and ~2.8a!

c↑~r z!5c↓~2r z!. ~2.8b!

Sincec is defined in half lattice constants through weig
~2.2!, we shall also use the notationc↑(r z)5c↑,m , wherem
is an integer or half integer, etc., interchangeably.

The following two Secs. II A and II B contain the infor
mation required to solve the Eqs.~2.4a! and~2.4b! for c and
ĉ. The reader not interested in the procedure for solut
may skip to Sec. II C.

A. System of equations

By inserting the bending energy and chain position,2r z
0

11<r z<r z
021, the factorw of Eq. ~2.2! into the condition

for c, Eq. ~2.4b!, the following equations are obtained aft
suitable translations:

15c i~r z!@12z0~112a1b!#2az0c↑S r z1
1

2D
2az0c↓S r z2

1

2D , ~2.9a!

15c↑S r z2
1

2D2bz0c↓S r z2
1

2D2z0c↑S r z1
1

2D
24az0c i~r z!, ~2.9b!

15c↓S r z1
1

2D2bz0c↑S r z1
1

2D2z0c↓S r z2
1

2D
24az0c i~r z!. ~2.9c!

These equations are valid away from the two plates actin
boundaries to the system. Consequently we shall refe
calculations relating to the above conditions as those pert
ing to the ‘‘bulk.’’ By using the expressions from the abov
system@Eqs. ~2.9a!–~2.9c!# c i(r z) can be eliminated, leav
ing equations expressingc↑(r z11/2) and c↓(r z11/2) in
terms ofc↓(r z21/2) andc↑(r z21/2). By defining the col-
umn vector

c~r !5S c↑~r !

c↓~r !
D , ~2.10!

it is possible to relate functions ofc at different steps by

c~r 11/2!5C•c~r 21/2!1D, ~2.11!

with the matrices

C5S C1 C2

C3 C4
D , ~2.12a!

D5S D1

2z0~12b!D1
D , ~2.12b!

with
1-3
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C15
12z0~112a1b!

z0@12z0~112a1b!14a2z0#
~2.12c!

5
~11C2!

z0~12b!
, ~2.12d!

C252
b@12z0~112a1b!#14a2z0

@12z0~112a1b!14a2z0#
~2.12e!

C352C2 , ~2.12f!

C45z0~12b!~12C2!, ~2.12g!

D152
12z0~112a1b!14az0

z0@12z0~112a1b!14a2z0#
. ~2.12h!

As a consequence any ‘‘bulk’’ values ofc can be calcu-
lated given the values ofc at a point ~integer and half-
integer! on the lattice:

cn1m5Cncm1~C21!21~Cn21!D, ~2.13a!

cn1m11/25Cncm11/21~C21!21~Cn21!D. ~2.13b!

Before commencing on further calculations we note:
~i! According to Eq.~2.9a! c i(r ) can be computed with

the knowledge ofc(r 61/2).
~ii ! The matrixC can be written in terms ofC2 as follows:

C5S 11C2

z0~12b!
C2

2C2 z0~12b!~12C2!
D . ~2.14!

A simple calculation shows that the determinant of the m
trix is 1, which means that its two eigenvalues are inverse
one another.

B. Boundary conditions and solution

To determine values ofc it is necessary to use Eqs
~2.13a! and~2.13b! in conjunction with the conditions at th
plates confining the polymer. Whenr z>N2 1

2 it is necessary
to refer to the full equations forc ~2.4b! rather than the bulk
values used in the preceding subsection. Equations at
upper plate, for example, are readily derived and recorde
Appendix C.

Equations~C4b! and~C5! relatec↑N21 to c↓N21 and Eqs.
~C3c! and ~C4a! relatec↑N21/2 to c↓N21/2.

152
4az0

12z0~112a1b!
1c↑,N212S 4a2z0

2

12z0~112a1b!

1bz0Dc↓,N21 , ~2.15a!
01180
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152
4az0

12z0~112a1b!
1c↑,N21/22S 4a2z0

2

12z0~112a1b!

1bz0Dc↓,N21/2. ~2.15b!

Similarly, one can derive for the bottom plate,

152
4az0

12z0~112a1b!
1c↓,2N112S 4a2z0

2

12z0~112a1b!

1bz0Dc↑,2N11 , ~2.15c!

152
4az0

12z0~112a1b!
1c↓,2N11/22S 4a2z0

2

12z0~112a1b!

1bz0Dc↑,2N11/2. ~2.15d!

A solvable system of equations now remains. We kn
from the boundary conditions given above that the two co
ponent of the column vectorcN21 are not independent an
we also know from Eq.~2.13a! that cN21 is related to
c2N11. All remaining values for the functionc can be de-
termined from the expressions in Appendix C and from
results of the preceding subsection.

The relationship betweencN21 andc2N11 is

cN215C2N22c2N111~C21!21~C2N2221!D.
~2.16!

Together with the boundary conditions~2.15a! and~2.15b!, it
is straightforward to determine the value ofcN21 from
which all other values ofc can be calculated.

The left and right matrices,L andR, of C diagonalizeC,

LCR5S l1 0

0 l2
D[S l 0

0 l21D , ~2.17!

where LR5RL51, ~2.18!

with L[S L1 L2

L3 L4
D , ~2.19!

and l65
1

2 Fz0~12b!~12C2!1
11C2

z0~12b!G
6

1

2
AS z0~12b!~12C2!1

11C2

z0~12b! D
2

24.

~2.20!

Equation~2.16! becomes
1-4
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LcN215S l1
2N22 0

0 l2
2N22D Lc2N11

1S l1
2N2221

l121
0

0
l2

2N2221

l221

D LD. ~2.21!

The solution is

c↓,N215H FL3X12l22N12L4X12
l22N1221

l2121
~L3D1

1L4D2!G ~l22N12L31l22N12L4X3!21

3~l2N22L11l2N22L2X2!1Fl2N22L2X12L1X1

1
l2N2221

l21
~L1D11L2D2!G J Y $L1X21L2

2l4N24~L11L2X2!~L31L4X2!21~L3X21L4!%,

~2.22!

where we have defined

X1511
4az0

12z0~112a1b!
, and ~2.23!

X25
4a2z0

2

12z0~112a1b!
1bz0 . ~2.24!

~They are the constant and coefficient in the boundary c
dition equations.! Standard methods can be used to find co
plete ~albeit lengthy! expressions forL1 , . . . ,L4.

Clearly, solution~2.22! is lengthy to write out in full,
although it is given explicitly. It is simpler to consider lim
iting expressions. For the purposes of this we shall choo
specific case, whereb5a2 and 0,a,1, and expand to firs
order in e5a, i.e., the case of an extremely stiff polyme
Functions for this scenario are labeled by a superscript ‘‘S. ’’

For the stiff case and fornPZ1 we have,

Cn.S z0
2n 0

0 z0
nD 1O~e2!, ~2.25!

En.S z0

12z0
~z0

2n21! 0

0
1

z021
~z0

n21!
D

3S 2
1

z0
2

4

12z0
e

11
4z0

12z0
e
D 1O~e2!, ~2.26!
01180
n-
-

a

where En[~C21!21~Cn21!D. ~2.27!

c↓,N21
S 5c↑,2N11

S .z0
2N221

1

z021
~z0

2N2221!1eS 4z0

12z0
D

3Fz0
2N221

z0
2N2221

z021 G , ~2.28!

c↓,0
S 5c↑,0

S .z0
N21S 12

1

12z0
D1

1

12z0
1e

4z0

12z0
F 1

12z0

1z0
N21S 12

1

12z0
D G , ~2.29!

c i ,0
S 5

1

12z0
1e

2z0

12z0
F 1

12z0
1z0

N211
1

12z0
~12z0

N21!G .
~2.30!

Similarly we have the following approximation for th
floppy ~‘‘ F ’’ ! case, wherea5b51,

CF5S 124z0

z0
21

1 0
D . ~2.31!

C. The grand canonical partition function, the density, and
average degree of polymerization

The grand canonical partition function, which also fe
tures in the expression for the density~1.7!, for the discrete
model is given as usual by

J511(
s

(
$r%

z~r,s!c~r,s!

5112z0~4c i ,2N1c↑,2N!1z0~1,1!•~12C!21

3$~12C2N!c2N11/21~12C2N21!c2N11

1@~12C!21~12C2N!22N1#•D1@~12C!21

3~12C2N21!2~2N21!1#•D%. ~2.32!

It is a number dependent onN, z0 , a, andb.
The parameters of the present model can be understoo

give two different types of behavior when considering, f
example, the parallel and perpendicular orientations at
center of the two plates. We wish to investigate the ratio
the probability that the segments in the middle of the pla
have a perpendicular orientation with respect to the plate
the probability that they are parallel to the plates using E
~1.7!,

n~0,↑ !

n~0,i !
5

c0
2

c i
2~0!

. ~2.33!

The values ofc↑(0) andc i(0) at the center are easily ca
culated according to the scheme in Appendix C and in p
ceding sections of the paper.
1-5



K. K. MÜLLER-NEDEBOCK, H. L. FRISCH, AND J. K. PERCUS PHYSICAL REVIEW E67, 011801 ~2003!
We calculate the ration(0,↑)/n(0,i) for the limiting case wherea andb[a2 are almost equal to 0 using Eqs.~2.29! and
~2.30! ~the ‘‘stiff’’ case labeled by ‘‘S’’ !.

nS~0,↑ !

nS~0,i !
.

z0
N21S 12

1

12z0
D1

1

12z0
1e

4z0

12z0
F 1

12z0
1z0

N21S 12
1

12z0
D G

1

12z0
1e

2z0

12z0
F 1

12z0
1z0

N211
1

12z0
~12z0

N21!G . ~2.34!
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For chains with a low fugacity and plates which are far ap
this ratio approaches 1, indicating that the chain segm
are isotropic in the center. For the stiff case it can be s
clearly that for long chains and small plate spacing mos
the polymer is parallel to the plates.

The degree of polymerization~1.9! can also be evaluate

j5
2z0

J H @c0
212c i

2#12(
i 51

N

~c↑,ic↓,i12c i ,i
2 !J .

~2.35!

The summation above also contains the nonbulk contr
tions at the edges of the system.

In theory it is also possible to compute averages of e
to-end distances for confined polymers using the mono
ensemble method. This would require alterations to
fugacity term and calculations beyond the scope of this pa
and is briefly discussed in Appendix B.

The Potts-type model which has been discussed in
present section can also be investigated from the viewp
of a set of differential equations. The discrete ‘‘bulk equ
tions’’ can be converted into differential equations by e
panding aroundr z to second order. The coupled set of d
ferential equations can be solved by Laplace transformat
The need to solve for the roots of a fourth-order polynom
for the inverse Laplace transform means that this met
does not bring about much of a simplification of the syste

III. INTEGRAL EQUATION

To obtain an integral equation for a system with stiffne
one can employ a system of double labeling of succes
bonds. Thus one can write for the partition function

JN5E da da8 db db8 •••^auwua8&^a8uzub&^buwub8&•••,

~3.1!

where the a,a8,b,b8, . . . denote successive bonds. T
scheme is illustrated in Fig. 1. For the bond labeled eithe
or 28 in Fig. 1 the unit vector for the bend can be comput
by means of (r22r3̂) and (r32r4̂). The torsional angle mus
be computed by taking more vectors into account and ca
constructed by investigating, for example, (r12r2)3(r2
2r3) in relation to (r32r4)3(r42r5). The full torsional and
bending energy at position 3 in Fig. 1 is then expres
through a potentialV(r1 ,r2 ,r3 ,r4 ,r5)5V(r¢3) which can be
written as a weight in the chemical potential factorz
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5z(r¢3)5exp@2bV(r¢3)#, with r¢3 representing the supervecto
centered around position 3. The role ofw lies in connecting
the other points correctly for the preceding and succeed
bond-related angles. It does this as follows:

•••^r¢uzur¢&^r¢uwur¢8&^r¢8uzur¢8&•••

5•••^r¢uzur¢&d~r182r2!d~r282r3!d~r382r4!d~r482r5!

3^r¢8uzur¢8&•••.
Part ~b! of Fig. 1 shows how the preceding mathematic

prescription of labeling follows when the monomers a
viewed as having internal structure, with appropriate weig
for internal conformations. The monomers interact so t
appropriate parts of the substructure coincide. This fixez
andw, respectively. We remark that there are several po

FIG. 1. The figure depicts the double labeling scheme in p
~a!. This scheme can also be seen to emerge fromd-function Bolt-
zmann factors connecting monomers with five-segment structu
as depicted in part~b! of the figure. The dashed double arrow
indicate which parts of the monomer 12345 must be the sa
physical locations on the monomer 1828384858. In this way the
dashed double arrows ared functions of the respective positions
We show one suchd function joining points 5 and 48.
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bilities to incorporate flexural and bending terms in the in
gral equation formalism; we shall illustrate one such way

The equation forc(r¢) becomes

c~r¢!5^r¢u~ I 2wz!21u1&, ~3.2!

leading to

15c~r1r2r3r4r5!2E d3r 58z~r2r3r4r5r58!c~r2r3r4r5r58!.

~3.3!

By assuming simple bending without torsional effects,
description can be simplified by making use of three c
secutive position coordinates:

c~r1r2r3!511E d3r 8z~r2r3r8!c~r2r3r8!, ~3.4a!

and

ĉ~r1r2r3!511E d3r8z~r8r1r2!ĉ~r8r1r2!. ~3.4b!

A model that lends itself readily to an iterative numeric
solution is that of the chain of segments of fixed leng
which is confined to a spherical region. A bending probab
ity for two adjacent segments labeled 12 and 23, with u
vectorsn̂12 and n̂23, can be assigned

P~ n̂12,n̂23!5p~11n̂12•n̂23!. ~3.5!

This causes the forward direction to be favored, withp.0.
The function ofz5z(r1 ,r2 ,r3) in this model is to restrict
r12r25n̂12 and r22r35n̂23 to unit vectors, and to keep th
vectors for the spatial locations of bondsr1 ,r2, andr3 from
going out of the confines of the sphere. Consequently,
can write

z~r1 ,r2 ,r2!5p~11n̂12•n̂23!d~ un̂12u21!d~ un̂23u21!

3q~R2ur1u!q~R2ur2u!q~R2ur3u!,

~3.6!

whereR is the radius of the confining sphere andq is the
Heavyside step function.

The spherical symmetry and Eqs.~3.6! and~3.4a! require
the following dependence:

c~r1r2r3!5c~ ur2u,n23,r !, ~3.7!

wheren23,r is the radial component of the unit vectorn̂23.

A. Results

In a numerical scheme to solve the equations, it is p
sible to iterate equation~3.4a! at different values of the pa
rameters. By rewriting the basic integral equation withP,
given by Eq.~3.5!, one has
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c~r,nr !511E dn̂8p~11n̂•n̂8!z̃c~r1n̂,n̂8!. ~3.8!

In this equationz̃ ensures that the positions of the bon
remain within the spherical region. We find~Appendix D!
that c can be split into a sum of two parts in success
spherical shells, one of which is only a function of the rad
distancer and another which is directly proportional to th
radial component of the unit vectornr multiplied by a func-
tion of r only. Therefore, to integrate from one spherical sh
to the next we write:

c~r ,nr ![f1~r !1nrf2~r !. ~3.9!

With this manner of splitting the functionc it is possible to
divide the system into a number of spherical shells for e
of which af1 andf2 have been defined. Equation~3.8! for
c can be iterated until the values converge. The integra
scheme for the different shells is discussed in Appendix

With the knowledge ofc the value ofJ can be com-
puted, and the density expression is

n~ n̂12,ur2u,n̂23!5
1

J
p~11n̂12•n̂23!c~r 2 ,n12,r !c~r 2 ,n23,r !.

~3.10!

This five-dimensional quantity can be plotted in a variety
manners. In Fig. 2 we plot the density at three different ra
in dependence on ther component ofn̂23 and both unit vec-
tors lying in the same plane. The other directional compon
is chosen as lying either radially outwardnz511 or radially
inwardnz521. For central regions of the sphere we see t
the straight configuration is favored and that the angular
tribution is more-or-less isotropic, i.e., that both unit vecto
lying inwards pointing or outwards pointing is almo

FIG. 2. Plot of the density at different radii forR530 andp
50.4. Dependence on the radial component of the first of the
consecutive vectors is shown, with the different lines represen
the second segment oriented either outward or inward along
radius at different positions within the sphere. Right- and le
sloping lines represent forward and backward directions, resp
tively. We see how the straight conformation is much favored
regions with smallr well inside the sphere. Near the boundary~at
r 530) the straight outward orientation~both unit vector compo-
nents equal to11) is seen to be greatly suppressed.
1-7
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equally probable. This changes appreciably at the si
where the radially outward density is considerably low
than the inwards-facing case.

In Fig. 3 the density for both unit vectors perpendicular
the radial direction and the bond being straight is plotted a
function of the radius and the probabilityp. The density de-
creases towards the boundary of the system, locatedR
530, and increases withp. Note that the chemical potentia
is built in throughp.

From these graphs a clear picture emerges of a c
which is homogeneous in the center of the confining sph
and which becomes depleted at the boundaries. At th
boundaries a tangential orientation of the segments is con
erably favored above the perpendicular~radial! case.

In Fig. 4 the dependence of the degree of polymerizat
on the combined probability and chemical potentialp is
shown.

B. Possible alternative methods for solution

Another method to solve the integral equation is mak
use of an expansion in terms of eigenfunctions, and us
successive substitutions to determine coefficients. For
case of Eq.~3.4a! a weight

FIG. 3. Plot of the density at different radii forR530 and vari-
ous values ofp. The significant decrease of the probability of th
straight orientation near the boundary can be seen clearly.

FIG. 4. Plot of the degree of polymerization at a function ofp.
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z~r1r2r3!5Nq̃@~r22r1!•~r32r2!#2

3~r22r1!2expS 2
1

,2
~r22r1!2D

3~r32r2!2expS 2
1

,2
~r32r2!2D ~3.11!

could be introduced. The first factor afterq̃ @which, as in Eq.
~3.6!, confines points to an appropriate region# represents the
bending interaction term of the type cos2u between two
bonds, while the peaked functionsx2exp(2x2) set a length
scale to the segments.N is a normalization.

The weightz andc can be expressed as a sum of~gener-
alized! Hermite polynomials@18#

z~r1r2r3!5(
n

qn^Hnur1r2r3&, ~3.12!

c~r1r2r3!5(
m

ym^r1r2r3uHm&. ~3.13!

These functions could be inserted into bending integral eq
tion ~3.4a!, and terms compared.

IV. DIFFERENTIAL EQUATION FORM

In Ref. @1# the density distribution for a polymer confine
to a spherical cavity was computed by expressingc in Eq.
~1.6a! as

zc5w21~c21!, ~4.1!

and by making the appropriate choices for the fugacity ins
and outside the cavity. The inverse Boltzmann factorw21

was taken to be the differential operator of whichw is the
Green function. A suitable choice was that of a Yukawa fo
leading to a Helmholtz operator,

d~r2r8!5w21
Ae2Kur2r8u

ur2r8u
5

21

4pA
~¹22K2!w. ~4.2!

A solution can be found readily for this system.
In order to introduce stiffness a segment of the polym

chain is now described by the positions of its endsx,x8 and
the orientation of those endsn̂,n̂8. Clearly, for a rod (x
2x8), n̂ and n̂8 are related. The vectorur& then has the
dependenceur&5ux,q,f&. By noting that,

S 21

a2 D S ]2

]a2
2a2D Fa

2
e2aua2a8uG5d~a2a8!, ~4.3!

a simple multiplicative, bending ‘‘Boltzmann’’ factor is in
troduced,
1-8
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w~x,q,f;x8,q8,f8!5
Aab

4ux2x8u
e2auq2q8u2buf2f8u2Kux2x8u.

~4.4!

The substitution

c215
h~r!

uru
j~q!z~f! ~4.5!

will separate the variables. For the spherical container
need to solve

S ]2

]q2
2a2D S ]2

]f2
2b2D ~¹22K2!h~x!j~q!z~f!50,

~4.6!

for the outside and

z05S ]2

]q2
2a2D S ]2

]f2
2b2D ~¹22K2!

h

x
jz

14pa2b2z0

h

x
jz, ~4.7!

for the inside. For the outside the usual radial solution
obtained, whereas for the inside of the sphere we have

S ]2

]q2
2a2D j5cjj, ~4.8!

S ]2

]f2
2b2D z5czz, ~4.9!

S ]2

]x2
2K2D h5chh, ~4.10!

where

cjczch524pAa2b2. ~4.11!

Here the radial distance and orientation of parts of the ch
are completely decoupled. This is physically acceptable.
impose the fact that the boundary conditions are cyclic
that j(q12p)5j(q) and z(f1p)5z(f). For the poly-
mer confined to the spherical cavity, the external solution
r only is required. The results forr are identical to the result
in @1#

r „c~r !21…5
K22K82

K82 S r 2
~11KR!sinhK8r

KsinhK8R1K8coshK8R
D ,

r<R. ~4.12!

Since the solutions to Eqs.~4.8! and~4.9! have to be periodic
or constant, the condition on the constantscj andcz are that

cj1a2<0 and ~4.13!
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cz1b2<0. ~4.14!

With Eq. ~4.11!, ch must be negative.

V. CONCLUSIONS

In summary, the formalism we have presented lends it
for tackling the difficult problem of a chain which is bot
stiff andconfined. Although it is possible, in principle, in ou
method ~see Appendix B!, we do not calculate end-to-en
vector averages, but can express the distributions of the
entation and location of polymer chain segments. In our f
malism it is relatively simple to implement constraints a
chain stiffness. Its strength lies in this simplicity and pow
fulness with respect to the usually tedious route of imp
menting, for example, the wormlike chain constraints of t
Kratky-Porod model when computing statistical physical a
erages. In many of the alternative approaches the condit
of stiffness can be treated only very approximately~see, e.g.,
Ref. @7# or Ref. @13#!. Furthermore, it becomes even mo
difficult to compute polymer chain properties when the ch
itself is confined to some space in many of the other me
ods. Although in this paper we do not calculate end-to-e
distributions for the chains, we have shown, neverthele
how to derive useful information about the constrained, s
polymer.

We have demonstrated how the method accommod
potentials with angular dependence in three different wa
For a stiff lattice polymer constrained between two para
plates, we showed that the polymer orientation behave
expected during confinement. The integral equations for
lattice model are tractable to advanced stages in the com
tation. For a spherical pore we demonstrated another me
by means of which stiffness can be assigned to a poly
chain through overlapping of more complicated monom
elements. Indeed, the formalism is quite generally applica
to a variety of polymer problems with more than position
degrees of freedom. In subsequent work we shall deve
this formalism for a path integral formulation to include th
investigation of the effects of lateral interactions.
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APPENDIX A: PERSISTENCE LENGTH BY MEANS OF
TRANSFER MATRIX

Defining the orientation of thei th segment of chain given
by Eq. ~2.2! r̂ iP$6 x̂,6 ŷ,6 ẑ%, the transfer matrix takes th
form
1-9
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^ r̂ i uTu r̂ i 11&5S 1 b a a a a

b 1 a a a a

a a 1 b a a

a a b 1 a a

a a a a 1 b

a a a a b 1

D . ~A1!

A persistence length for this model could then be compu
by taking the average ofx̂1• x̂N by usual transfer matrix tech
niques. If one wishes to determine the persistence len
when the chain is confined to two dimensions between
plates, the matrix above needs only to be reduced dimens
ally.

APPENDIX B: GENERATING FUNCTIONS FROM J

The monomer ensemble method introduced in Sec.
completely general for the form of the fugacity termz(r).
Modification ofz enables the use of the calculations forJ as
a generating function.

If z(r) were changed by the use of a parameterm and an
arbitrary three-dimensional vector, in addition to the usua
spatial constraintzconstr(r) as follows:

z~r!5zconstr~r!eimen•,, ~B1!

wheren is the segment orientation, this would result inJ
5J(m,,) as given by Eq.~1.8!.

Derivatives ofJ with respect to, then generate expres
sions in terms of(segmentsn5Rend-to-end, i.e., the end-to-end
distance of the chain. Suitable integration overm would
transform to canonical values.

In order to apply such a method the equations forc andĉ
~1.6a!,~1.6b! would then have to be solved for the newz. This
would result in more complicated expressions than prese
in the body of this paper and has been left for future wo

APPENDIX C: LATTICE BOUNDARY CONDITION AND
CENTRAL VALUE EQUATIONS

Here we employ Eq.~2.4b! for different values ofr z and
s near the boundaries.

~1! For r z5r z
011, and fors5↑,↓, andi , respectively,

15c↑~r z
011!, ~C1a!

152z0c↓~r z
0!1c↓~r z

011!, ~C1b!

15c i~r z
011!. ~C1c!

~2! For r z5r z
01 1

2 , and fors5↑,↓, andi , respectively,

15c↑S r z
01

1

2D , ~C2a!
01180
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1524az0c i~r z
0!2z0c↓S r z

02
1

2D1c↓S r z
01

1

2D ,

~C2b!

152az0c↓~r z
0!1c iS r z

01
1

2D . ~C2c!

~3! For r z5r z
0 , and fors5↑,↓, andi , respectively,

152bz0c↓~r z
0!1c↑~r z

0!, ~C3a!

1524az0c iS r z
02

1

2D2z0c↓~r z
021!1c↓~r z

0!,

~C3b!

152az0c↓S r z
02

1

2D1@12z0~112a1b!#c i~r z
0!.

~C3c!

~4! For r z5r z
02 1

2 , and fors5↑, andi , respectively,

1524az0c i~r z
0!2bz0c↓S r z

02
1

2D1c↑S r z
02

1

2D ,

~C4a!

15@12z0~112a1b!#c iS r z
02

1

2D2az0c↓~r z
021!.

~C4b!

~5! For r z5r z
021 ands5↑,

1524az0c iS r z
02

1

2D2bz0c↓~r z
021!1c↑~r z

021!.

~C5!

Halfway between the plates the symmetry dictates tha

c↑,05c↓,0 . ~C6!

APPENDIX D: NUMERICAL INTEGRATION SCHEME
FOR SPHERE-CONSTRAINED WALK

In order to elucidate the integration scheme used for
numerical calculations we refer to Fig. 5. The spherical
ometry of the system is shown here up to the edge of
system. For each shell of thickness 1 we calculatec i5f i

(1)

FIG. 5. Schematic representation of the integration proced
over shells. The shell numbering is illustrated, as well as the mix
between different shells. ‘‘F ’’ represents the forbidden region fo
any bond of the polymer.
1-10
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1nzfi
(2) . Since the shells have the thickness of the radius

the bond, at each stage there are contributions from the
adjoining shells, according to Eq.~3.8!. These can be
summed if we assume that the values off i

(1) and f i
(2) are

constant and approximately equal to the value of thef ’s in
s,

v

01180
f
o
themiddleof each shell. In the final shell ending at the radi
R, the bond vector is permitted to move only in the allow
regionA with zero weight in the forbidden regionF of Fig.
5. The set@f i

(1) ,f i
(2)# is iterated through Eq.~3.8! until the

values no longer change.
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